TUYỂN SINH VÀ NGHỀ NGHIỆP
Image default
ÔN TẬP KIẾN THỨC

Lý thuyết Hệ tọa độ trong không gian hay, chi tiết nhất – Toán lớp 12

Lý thuyết Hệ tọa độ trong không gian hay, chi tiết

Lý thuyết Hệ tọa độ trong không gian

Bài giảng: Bài 1 : Hệ tọa độ trong không gian – Thầy Trần Thế Mạnh (Giáo viên VietJack)

A. Tóm tắt lý thuyết

Quảng cáo

1. Hệ trục tọa độ trong không gian

Trong không gian, xét ba trục tọa độ Ox, Oy, Oz vuông góc với nhau từng đôi một và chung một điểm gốc O. Gọi i→, j→, k→ là các vectơ đơn vị, tương ứng trên các trục Ox, Oy, Oz. Hệ ba trục như vậy gọi là hệ trục tọa độ vuông góc trong không gian.

Chú ý: Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

2. Tọa độ của vectơ

a) Định nghĩa: u→ = (x; y; z) ⇔ k→ = xi→ + yj→ + zk→

b) Tính chất: Cho a→ = (a1; a2; a3), b→ = (b1; b2; b3), k ∈ R

a→ ± b→ = (a1 ± b1; a2 ± b2; a3 ± b3; )

• ka→ = (ka1; ka2; ka3)

0→ = (0; 0; 0), i→ = (1; 0; 0), j→ = (0; 1; 0), k→ = (0; 0; 1)

a→ cùng phương b→ (b→0→) ⇔ a→ = kb→ (k ∈ R)

a→.b→ = a1.b1 + a2.b2 + a3.b3

a→b→ ⇔ a1b1 + a2b2 + a3b3 = 0

3. Tọa độ của điểm

a) Định nghĩa: M(x; y; z) ⇔ OM→ = x.i→ + y.j→ + z.k→ (x : hoành độ, y : tung độ, z : cao độ)

Chú ý: • M ∈ (Oxy) ⇔ z = 0; M ∈ (Oyz) ⇔ x = 0; M ∈ (Oxz) ⇔ y = 0

• M ∈ Ox ⇔ y = z = 0 ; M ∈ Oy ⇔ x = z = 0 ; M ∈ Oz ⇔ x = y = 0 .

b) Tính chất: Cho A(xA; yA; zA), B(xB; yB; zB)

AB→ = (xB – xA; yB – yA; zB – zA)

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải
• Toạ độ trung điểm của đoạn thẳng AB :
Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải
• Toạ độ trọng tâm G của tam giác ABC :
Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải
• Toạ độ trọng tâm G của tứ diện ABCD :
Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

4. Tích có hướng của hai vectơ

a) Định nghĩa: Trong không gian Oxyz cho hai vectơ a→ = (a1; a2; a3), b→ = (b1; b2; b3). Tích có hướng của hai vectơ a→b→ kí hiệu là [a→, b→], được xác định bởi

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Chú ý: Tích có hướng của hai vectơ là một vectơ, tích vô hướng của hai vectơ là một số.

b) Tính chất:

• [a→, b→] ⊥ a→; [a→, b→] ⊥ b→

• [a→, b→] = -[b→, a→]

• [i→, j→] = k→; [j→, k→] = i→; [k→, i→] = j→

• |[a→, b→]| = |a→|.|b→|.sin(a→, b→) (Chương trình nâng cao)

a→, b→ cùng phương ⇔ [a→, b→] = 0→ (chứng minh 3 điểm thẳng hàng)

c) Ứng dụng của tích có hướng: (Chương trình nâng cao)

• Điều kiện đồng phẳng của ba vectơ: a→, b→c→ đồng phẳng ⇔ [a→, b→].c→ = 0

• Diện tích hình bình hành ABCD: SABCD = |[AB→], AD→|

• Diện tích tam giác ABC: SABC = 1/2 |[AB→], AC→|

• Thể tích khối hộp ABCDA’B’C’D’ : VABCD.A’B’C’D’ = |[AB→, AD→].AA’→|

• Thể tích tứ diện ABCD: VABCD = 1/6 |[AB→, AC→].AD→|

Quảng cáo

    Chú ý:

Tích vô hướng của hai vectơ thường sử dụng để chứng minh hai đường thẳng vuông góc, tính góc giữa hai đường thẳng.

Tích có hướng của hai vectơ thường sử dụng để tính diện tích tam giác; tính thể tích khối tứ diện, thể tích hình hộp; chứng minh các vectơ đồng phẳng – không đồng phẳng, chứng minh các vectơ cùng phương.

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

5. Phương trình mặt cầu

a) Định nghĩa:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải
Cho điểm I cố định và thắt chặt và một số ít thực dương R. Tập hợp tổng thể những điểm M trong khoảng trống cách I một khoảng chừng R được gọi là mặt cầu tâm I, nửa đường kính R.
Kí hiệu : S ( I ; R ) ⇔ S ( I ; R ) = { M | IM = R }
Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

b) Vị trí tương đối giữa mặt cầu và mặt phẳng :

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Lưu ý: Khi mặt phẳng (P) đi qua tâm I thì mặt phẳng (P) được gọi là mặt phẳng kính và thiết diện lúc đó được gọi là đường tròn lớn.

c) Vị trí tương đối giữa mặt cầu và đường thẳng :

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

* Lưu ý: Trong trường hợp Δ cắt (S) tại 2 điểm A, B thì bán kính R của (S) được tính như sau:

+ Xác định: d(I; Δ) = IH

+ Lúc đó:Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

ĐƯỜNG TRÒN TRONG KHÔNG GIAN OXYZ

* Đường tròn ( C ) trong khoảng trống Oxyz, được xem là giao tuyến của ( S ) và mặt phẳng .
Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải
( S ) : x2 + y2 + z2 – 2 ax – 2 by – 2 cz + d = 0
( α ) : Ax + By + Cz + D = 0
* Xác định tâm I ’ và nửa đường kính R ’ của ( C ) .

+ Tâm I’ = d ∩ (α).

Trong đó d là đường thẳng đi qua I và vuông góc với mp ( α )

+ Bán kính Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

d) Điều kiện tiếp xúc : Cho mặt cầu (S) tâm I, bán kính R.

+ Đường thẳng Δ là tiếp tuyến của (S) ⇔ d(I; Δ) = R

+ Mặt phẳng (α) là tiếp diện của (S) ⇔ d(I;(α)) = R

* Lưu ý: Tìm tiếp điểm Mo(xo; yo; zo) .

Sử dụng tính chất :Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

B. Kĩ năng giải bài tập

Dạng 1: VIẾT PHƯƠNG TRÌNH MẶT CẦU

Phương pháp:

* Cách 1: Bước 1: Xác định tâm I(a; b; c) .

Bước 2: Xác định bán kính R của (S).

Bước 3: Mặt cầu (S) có tâm I(a; b; c) và bán kính R.

( S ) : ( x – a ) 2 + ( y – b ) 2 + ( z – c ) 2 = R2

* Cách 2: Gọi phương trình (S): x2 + y2 + z2 -2ax – 2by – 2cz + d = 0

Phương trình ( S ) trọn vẹn xác lập nếu biết được a, b, c, d. ( a2 + b2 + c2 – d > 0 )

Bài 1: Viết phương trình mặt cầu (S), trong các trường hợp sau:

a ) ( S ) có tâm I ( 2 ; 2 ; – 3 ) và nửa đường kính R = 3 .
b ) ( S ) có tâm I ( 1 ; 2 ; 0 ) và ( S ) qua P ( 2 ; – 2 ; 1 ) .
c ) ( S ) có đường kính AB với A ( 1 ; 3 ; 1 ), B ( – 2 ; 0 ; 1 ) .

Hướng dẫn:

a ) Mặt cầu tâm I ( 2 ; 2 ; – 3 ) và nửa đường kính R = 3, có phương trình :
( S ) : ( x – 2 ) 2 + ( y – 2 ) 2 + ( z + 3 ) 2 = 9

b) Ta có: IP→ = (1; -4; 1) ⇒ IP = 3√2.

Mặt cầu tâm I ( 1 ; 2 ; 0 ) và nửa đường kính R = IP = 3 √ 2, có phương trình :
( S ) : ( x – 1 ) 2 + ( y – 2 ) 2 + z2 = 18

c) Ta có: AB→ = (-3; -3; 0) ⇒ AB = 3√2.

Gọi I là trung điểm AB ⇒ Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Mặt cầu tâm Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải và bán kính Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải, có phương trình:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Bài 2:Viết phương trình mặt cầu (S), trong các trường hợp sau:

a ) ( S ) qua A ( 3 ; 1 ; 0 ), B ( 5 ; 5 ; 0 ) và tâm I thuộc trục Õ .
b ) ( S ) có tâm O và tiếp xúc mặt phẳng ( α ) : 16 x – 15 y – 12 z + 75 = 0 .
c ) ( S ) có tâm I ( – 1 ; 2 ; 0 ) và có một tiếp tuyến là đường thẳng
Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Hướng dẫn:

a) Gọi I(a; 0; 0) ∈ Ox. Ta có : IA→ = (3-a; 1; 0), IB→ = (5-a; 5; 0).

Do (S) đi qua A, B ⇔ IA = IB Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải ⇔ 4a = 40 ⇔ a = 10

⇒ I ( 10 ; 0 ; 0 ) và IA = 5 √ 2 .
Mặt cầu tâm I ( 10 ; 0 ; 0 ) và nửa đường kính R = 5 √ 2, có phương trình ( S ) : ( x – 10 ) 2 + y2 + z2 = 50
b ) Do ( S ) tiếp xúc với ( α ) ⇔ d ( O, ( α ) ) = R ⇔ R = 75/25 = 3
Mặt cầu tâm O ( 0 ; 0 ; 0 ) và nửa đường kính R = 3, có phương trình ( S ) : x2 + y2 + z2 = 9

c) Chọn A(-1; 1; 0) ∈ Δ ⇒ IA→ = (0; -1; 0).

Đường thẳng Δ có một vectơ chỉ phương là uΔ→ = (-1; 1; -3). Ta có: [IA→, uΔ→] = (3; 0; -1) .

Do (S) tiếp xúc với Δ ⇔ d(I, Δ) = R Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải.

Mặt cầu tâm I(-1; 2; 0) và bán kính R = √10/11, có phương trình (S) : Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Dạng 2 : SỰ TƯƠNG GIAO VÀ SỰ TIẾP XÚC

Phương pháp: * Các điều kiện tiếp xúc:

+ Đường thẳng Δ là tiếp tuyến của ( S ) ⇔ d ( I ; Δ ) = R
+ Mặt phẳng ( α ) là tiếp diện của ( S ) ⇔ d ( I ; ( α ) ) = R

* Lưu ý các dạng toán liên quan như tìm tiếp điểm, tương giao.

Bài 1: Cho đường thẳng Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải và và mặt cầu (S): x2 + y2 + z2 – 2x + 4z + 1 = 0. Số điểm chung của (Δ) và (S) là :

A. 0. B. 1. C. 2. D. 3 .

Hướng dẫn:

Đường thẳng (Δ) đi qua M(0; 1; 2) và có một vectơ chỉ phương là u→ = (2; 1; -1)

Mặt cầu ( S ) có tâm I ( 1 ; 0 ; – 2 ) và nửa đường kính R = 2

Ta có MI→ = (1; -1; -4) và [u→, MI→] = (-5; 7; -3) ⇒ Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Vì d ( I, Δ ) > R nên ( Δ ) không cắt mặt cầu ( S )

Bài 2: Cho điểm I(1; -2; 3). Phương trình mặt cầu tâm I và tiếp xúc với trục Oy là:

A. ( x – 1 ) 2 + ( y + 2 ) 2 + ( z – 3 ) 2 = √ 10
B. ( x – 1 ) 2 + ( y + 2 ) 2 + ( z – 3 ) 2 = 10
C. ( x + 1 ) 2 + ( y 2 2 ) 2 + ( z + 3 ) 2 = 10
D. ( x – 1 ) 2 + ( y + 2 ) 2 + ( z – 3 ) 2 = 9

Hướng dẫn:

Gọi M là hình chiếu của I ( 1 ; – 2 ; 3 ) lên Oy, ta có : M ( 0 ; – 2 ; 0 ) .

IM→ (-1; 0; -3) ⇒ R = d(I,Oy) = IM = √10 là bán kính mặt cầu cần tìm.

Phương trình mặt cầu là : ( x – 1 ) 2 + ( y + 2 ) 2 + ( z – 3 ) 2 = 10

Lý thuyết và bài tập trắc nghiệm có đáp án và lời giải chi tiết Toán lớp 12 khác:

Giới thiệu kênh Youtube VietJack

Ngân hàng trắc nghiệm miễn phí ôn thi THPT Quốc Gia tại khoahoc.vietjack.com

phuong-phap-toa-do-trong-khong-gian.jsp

Tin liên quan

Bộ Đề kiểm tra, đề thi Lịch Sử 12 Học kì 1 năm 2021 – 2022 có đáp án (16 đề)

tuyensinh

Lý thuyết Địa Lí 12 – Bài 16: Đặc điểm dân số và phân bố dân cư ở nước ta

tuyensinh

Top 9 sổ tay toán lý hóa sinh anh 2022

tuyensinh